首页> 美国政府科技报告 >Covariance Matrix Estimator Performance In Non-Gaussian Spherically InvariantRandom Processes. Revision
【24h】

Covariance Matrix Estimator Performance In Non-Gaussian Spherically InvariantRandom Processes. Revision

机译:非高斯球面不变随机过程中的协方差矩阵估计器性能。调整

获取原文

摘要

This report describes the performance of the covariance matrix estimator in non-Gaussian spherically invariant random processes (SIRP). Analytic expressions are derived for the variance of the estimator. Specific consideration is given to the special cases of Weibull and K-distributed processes as a function of the shape parameter. Validation is achieved via Monte-Carlo simulation. The expressions reveal the increase in the estimator variance for non-Gaussian SIRP's as well as the sample support size required to reduce the variance to that of the Gaussian case.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号