首页> 美国政府科技报告 >Asynchronous Data Fusion for AUV Navigation Using Extended Kalman Filtering
【24h】

Asynchronous Data Fusion for AUV Navigation Using Extended Kalman Filtering

机译:基于扩展卡尔曼滤波的aUV导航异步数据融合

获取原文

摘要

A truly Autonomous Vehicle must be able to determine its global position in theabsence of external transmitting devices. This requires the optimal integration of all available organic vehicle attitude and velocity sensors. This thesis investigates the extended Kalman filtering method to merge asynchronous heading, heading rate, velocity, and DGPS information to produce a single state vector. Different complexities of Kalman filters, with biases and currents, are investigated with data from Florida Atlantic's Ocean Explorer II surface run. This thesis used a simulated loss of DGPS data to represent the vehicle's submergence. All levels of complexity of the Kalman filters are shown to be much more accurate then the basic dead reckoning solution commonly used aboard autonomous underwater vehicles.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号