首页> 美国政府科技报告 >Bayesian Tree-Structured Image Modeling
【24h】

Bayesian Tree-Structured Image Modeling

机译:贝叶斯树结构图像建模

获取原文

摘要

Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint statistics of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training (using the EM algorithm, for example). In this paper, we propose two reduced-parameter HMT models that capture the general structure of a broad class of grayscale images. The image HMT (iHMT) model leverages the fact that for a large class of images the structure of the HMT is self-similar across scale. This allows us to reduce the complexity of the iHMT to just nine easily trained parameters (independent of the size of the image and the number of wavelet scales). In the universal HMT (uHMT) we take a Bayesian approach and fix these nine parameters. The uHMT requires no training of any kind. While simple, we show using a series of image estimation/denoising experiments that these two new models retain nearly all of the key structures modeled by the full HMT. Based on these new models, we develop a shift-invariant wavelet denoising scheme that outperforms all algorithms in the current literature.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号