首页> 外文会议>Mathematical Modeling, Bayesian Estimation, and Inverse Problems >Bayesian tree-structured image modeling using wavelet-domain hidden Markov models
【24h】

Bayesian tree-structured image modeling using wavelet-domain hidden Markov models

机译:基于小波域隐马尔可夫模型的贝叶斯树结构图像建模

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree model captures the key features of the joint density of the wavelet coefficients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training. In this paper, we prose two reduced-parameter HMT models that capture the general structure of a broad class of real-world images. In the image HMT (iHMT) model we use the fact that for a large class of images the structure of the HMT is self-similar across scale. This allows us to reduce the complexity of the iHMT to just nine easily trained parameters. In the universal HMT (uHMT) we take a Bayesian approach and fix these nine parameters. The uHMT requires no training of any kind. While simple, we show using a series of image estimation/denoising experiments that these two new models retain nearly all of the key structure modeled by the full HMT. Finally, we propose a fast shift-invariant HMT estimation algorithm that outperforms all other wavelet- based estimators in the current literature, both in mean- square error and visual metrics. !21
机译:摘要:小波域隐马尔可夫模型已被证明是用于统计信号和图像处理的有用工具。隐藏的马尔可夫树模型捕获了真实数据的小波系数联合密度的关键特征。 HMT框架的一个潜在缺点是需要计算量大的迭代训练。在本文中,我们提出了两个减少参数的HMT模型,它们捕获了一大类真实世界图像的一般结构。在图像HMT(iHMT)模型中,我们使用以下事实:对于一大类图像,HMT的结构在整个范围内都是自相似的。这使我们可以将iHMT的复杂性降低到仅9个易于训练的参数。在通用HMT(uHMT)中,我们采用贝叶斯方法并修复了这9个参数。 uHMT不需要任何形式的培训。虽然简单,但我们通过一系列图像估计/去噪实验表明,这两个新模型几乎保留了完整HMT建模的所有关键结构。最后,我们提出了一种快速平移不变的HMT估计算法,该算法在均方误差和视觉指标方面均优于当前文献中所有其他基于小波的估计器。 !21

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号