首页> 美国政府科技报告 >Rigidity Theorems of Hamada and Ohmori, Revisited
【24h】

Rigidity Theorems of Hamada and Ohmori, Revisited

机译:重新审视了Hamada和Ohmori的刚性定理

获取原文

摘要

Let Alpha be a (0,1)-matrix of size beta is greater than or equal to upsilon. Suppose that all rows (columns) of Alpha are nonzero and distinct. We show that the rank of Alpha over a field of characteristic 2 satisfies, rank(2) (Alpha) is greater than or equal to log(2) (upsilon + 1), with equality if and only if Alpha is the incidence matrix of a point-hyperplane Hadamard design. This generalizes a rigidity theorem of Hamada and Ohmori, who assumed that upsilon + 1 is a power of 2 and that Alpha is already known to be the incidence matrix of a Hadamard design. Our results follow from a generalization of a rank inequality of Wallis.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号