首页> 美国政府科技报告 >Stable Neural Control of Uncertain Multivariable Systems.
【24h】

Stable Neural Control of Uncertain Multivariable Systems.

机译:不确定多变量系统的稳定神经控制。

获取原文

摘要

Tracking control of a class of nonlinear, uncertain, multi-input, multiple-output systems is addressed in this paper. The control system architecture uses neural networks for function approximation, certainty equivalent control inputs to cancel plant dynamics and smoothed sliding mode control to insure that the trajectories remain bonded. Lyapunov analysis is used to derive equations for the sliding mode control, neural network training, and to show uniform ultimate boundedness of the closed loop systems. Stability analysis results are shown for single-input single-output and two-input two- output systems. Results are then extended to the more general multiple-input multiple-output case where the number of inputs is equal to the number of outputs. Simple simulation examples are used to illustrate control system performance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号