首页> 美国政府科技报告 >Integrated Hypersonic Aerothermoelastic Methodology for Transatmospheric Vehicle (TAV)/Thermal Protection System (TPS) Structural Design and Optimization.
【24h】

Integrated Hypersonic Aerothermoelastic Methodology for Transatmospheric Vehicle (TAV)/Thermal Protection System (TPS) Structural Design and Optimization.

机译:用于跨大气层车辆(TaV)/热保护系统(Tps)结构设计和优化的高超声速气动弹性方法。

获取原文

摘要

The adaptation of ZONA unified hypersonic/supersonic method ZONA7U and its integration/development into a ZONA aerothermoelastic software system for transatmospheric vehicle (TAV)/thermal protection system (TPS) design/ analysis was proven a successful tool through feasibility study with cases of a CKEM body, blunt cones, and a modeled X-34 wing body. Preceding the feasibility study, substantial effort was directed toward further development of a new code, ZSTREAM, and using it and ZABRO to replace the outdated modules in SHVD, thus to couple them with SHABP for aerothermoelastic applications. In the feasibility study, the cases are well validated with FD solutions. Next, computed heat rates by applying ZONA aerothermoelastic software to X-34 through two assigned hypersonic trajectories were shown and found to agree with those using MINIVER. A potential TPS design procedure was established using the obtained heat rates as an input to MINIVER, resulting in a minimum weight TPS per hot-wall consideration. With FEM/TRIM modules, ASTROS* yields the trim solution and stress distribution for a flexible X-34 at a typical trajectory joint, demonstrating the multifunctionality in MDO for the aerothermoelastic software.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号