首页> 外文期刊>Aerospace science and technology >Effect of thermal protection system size on aerothermoelastic stability of the hypersonic panel
【24h】

Effect of thermal protection system size on aerothermoelastic stability of the hypersonic panel

机译:热保护系统尺寸对高超声音面板空泡稳定性的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The design optimization of Thermal Protection System (TPS) for airbreathing hypersonic vehicles is typically carried to resolve aerodynamic heating concerns. The target is achieved through material selection and structural configuration so that the resultant TPS is light weight and provides sufficient insulation. However, in this investigation, aerothermoelastic stability is also incorporated into TPS size design. A simplified arrangement consisting of an underlying panel and TPS with a thermal radiation coating and an insulation layer is investigated. The two-way fluid-thermal-structure coupling scheme includes mutual interaction between panel deformation and aerodynamic heat flux. The coupling aerothermoelastic model is first verified by comparing with the seminar work by Culler. Subsequently, the fluid parameter studies in terms of transitional location and radiation emissivity are then conducted on the verified model. A parametric study is conducted such that seven TPS size cases with various layers thickness are selected and compared in terms of structural weight and onset of flutter. Finally, the aerothermoelastic stability regions manifested by Flat, Buckled, Chaos and Quasi-periodic features pertaining to Mach number, flight height and TPS size are mapped out. The results indicate that TPS size can alter the panel aerothermoelastic stability boundaries in an obvious way. A new finding is that the TPS size in the pioneering work by Culler is not the best design either for a higher flutter boundary or for a lighter weight. In contrast, Case2 and Case7 in this study are better choice due to the delay in onset of flutter with lighter weight. This study necessitates aerothermoelastic analysis in TPS optimization design for the airbreathing hypersonic vehicles. (C) 2020 Elsevier Masson SAS. All rights reserved.
机译:用于气叉化高超声速车辆的热保护系统(TPS)的设计优化通常具有解决空气动力学加热问题。通过材料选择和结构构造来实现目标,使得所得TPS重量轻,提供足够的绝缘。然而,在该研究中,空气热弹性稳定性也结合到TPS尺寸设计中。研究了由底板和具有热辐射涂层和绝缘层的TP组成的简化布置。双向流体 - 热结构耦合方案包括面板变形和空气动力学通量之间的相互相互作用。首先通过与Culler的研讨会工作进行比较,首先验证偶联的空气热弹性模型。随后,在经过验证的模型上进行过渡位置和辐射发射率的流体参数研究。进行参数化研究,使得选择具有各种层厚度的七个TPS尺寸壳体,并在结构重量和颤动开始方面进行比较。最后,通过与马赫数,飞行高度和TPS尺寸有关的平坦,屈曲,混乱和准周期性特征的空气热弹性稳定性区域被绘制出来。结果表明,TPS尺寸可以以明显的方式改变面板空气热弹性稳定边界。一个新的发现是,Culler的开创性工作中的TPS尺寸不是最佳的颤音边界或更轻的最佳设计。相反,本研究中的案例2和案例7是由于较轻重量颤动的延迟而更好的选择。本研究需要在空气灰化高超声速设计中的TPS优化设计中的空气热弹性分析。 (c)2020 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2020年第2期|106170.1-106170.16|共16页
  • 作者

    Xie Dan; Dong Bin; Jing Xingjian;

  • 作者单位

    Northwestern Polytech Univ Sch Astronaut Shaanxi Aerosp Flight Vehicle Design Key Lab Xian 710072 Peoples R China|Hong Kong Polytech Univ Dept Mech Engn Hong Kong Peoples R China;

    China Aerodynam Res & Dev Ctr Res High Speed Aerodynam Inst Mianyang 621000 Sichuan Peoples R China|Univ Hong Kong Dept Mech Engn Hong Kong Peoples R China;

    Hong Kong Polytech Univ Dept Mech Engn Hong Kong Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hypersonic; Aerothermoelasticity; TPS; Two-way coupling; Stability;

    机译:过度;空气热弹性;TPS;双向耦合;稳定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号