首页> 美国政府科技报告 >Understanding the Effects of Blast Wave on the Intracranial Pressure and Traumatic Brain Injury in Rodents and Humans Using Experimental Shock Tube and Numerical Simulations.
【24h】

Understanding the Effects of Blast Wave on the Intracranial Pressure and Traumatic Brain Injury in Rodents and Humans Using Experimental Shock Tube and Numerical Simulations.

机译:用实验性激波管和数值模拟理解爆炸波对啮齿动物和人类颅内压和创伤性脑损伤的影响。

获取原文

摘要

Blast induced neurotrauma (BINT) has been designated as the signature injury to warfighters in the recent military conflicts. In the past decade, conflicts in Iraq (operation Iraqi freedom) and Afghanistan (operation enduring freedom) as well as the increasing burden of the terrorism around the world resulted in an increased number of cases with blast Traumatic Brain Injury (bTBI). Recently, a lot of research has been done to study the neurological and neurochemical degenerations resulting from BINT using animal models especially rat models. However, it is not clear how and whether the biological outcomes from animal models can be translated to humans; this work is aimed to address this issue. In this dissertation, the criteria for achieving a standardized methodology to produce shock blast waves are identified. Firstly, shock tube adjustable parameters (SAPs) such as breech length, type of gas and membrane thickness were used for controlling and producing desired blast waves by manipulating shock wave parameters (SWPs). Secondly, using a surrogate head model, the data from the laboratory experiments were compared with experimental data obtained from the field explosions data to show the validity of the laboratory experiments. Finally, effect of test section location on the fidelity of the rat model in simulating field conditions was studied. Through these steps a standardized and accurate method of replicating the field blast was established. Using the standardized methodology to model blast waves, the intracranial pressure for various incident pressures on the rat model was studied. Furthermore, to understand the mechanisms of loading and to study the influence of field variables, a finite element model of rat along with the simple ellipsoidal model was developed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号