首页> 美国政府科技报告 >Donuts, Scratches and Blanks: Robust Model-Based Segmentation of Microarray Images
【24h】

Donuts, Scratches and Blanks: Robust Model-Based Segmentation of Microarray Images

机译:甜甜圈,划痕和空白:基于模型的基于微阵列图像的稳健分割

获取原文

摘要

Inner holes, artifacts and blank spots are common in microarray images, but current image analysis methods do not pay them enough attention. We propose a new robust model-based method for processing microarray images so as to estimate foreground and background intensities. The method starts with a very simple but effective automatic gridding method, and then proceeds in two steps. The first step applies model-based clustering to the distribution of pixel intensities, using the Bayesian Information Criterion (BIC) to choose the number of groups up to a maximum of three. The second step is spatial, finding the large spatially connected components in each cluster of pixels. The method thus combines the strengths of histogram-based and spatial approaches. It deals effectively with inner holes in spots and artifacts. It also provides a formal inferential basis for deciding when the spot is blank, namely when the BIC favors one group over two or three. In experiments, our method had better stability across replicates than a fixed-circle segmentation method or the seeded region growing method in the SPOT software, without introducing noticeable bias when estimating the intensities of differentially expressed genes. An R software package called spotSegmentation implementing the method is being made available through the BioConductor project.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号