首页> 美国政府科技报告 >Receiver Performance for an Enhanced DGPS Data Channel.
【24h】

Receiver Performance for an Enhanced DGPS Data Channel.

机译:增强型DGps数据通道的接收器性能。

获取原文

摘要

The Coast Guard currently operates a maritime differential GPS service consisting of two control centers and over 85 remote broadcast sites. This service broadcasts GPS correction information on marine radiobeacon frequencies to improve the accuracy and integrity of GPS. The existing system provides differential corrections over a medium frequency carrier using minimum shift keying (MSK) as the modulation method. MSK is a version of the Continuous Phase Frequency Shift Keying (CPFSK) modulation technique that is 'spectrally compact,' meaning that it is a narrow band modulation scheme. In a binary signaling channel the two instantaneous frequencies for this modulation method are chosen in such a way so as to produce orthogonal signaling with a minimum modulation index. Current DGPS corrections are transmitted at a relatively low data rate, with message structures designed in an era when Selective Availability was in full operation. Greater demands for accuracy coupled with current operations in a 'post SA' environment have prompted a reexamination of the DGPS data and signal structure, with an eye towards improving information rate while minimizing legacy user impact. A two-phased plan for a new generation of DGPS capability can be envisioned. In the first phase (near-term) new ionospheric messages would be introduced to allow greater DGPS accuracy at larger distances from the beacons. This capability could support both double (LI/L2) and triple (L1/L2/L5) frequency operation. This phase requires only the definition of the new message type(s) and the commitment of receiver manufacturers to implement the usage of the new data. In the second phase (intermediate future) a new signal would come on line to support RTK using two and three frequencies and homeland security messaging. This signal would have the capacity to send 500 bps or so without disrupting the leg.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号