首页> 美国政府科技报告 >Kinematic and Attribute Fusion Using a Bayesian Belief Network Framework
【24h】

Kinematic and Attribute Fusion Using a Bayesian Belief Network Framework

机译:使用贝叶斯信念网络框架的运动学和属性融合

获取原文

摘要

The focus of tracking applications has traditionally centred on kinematic state estimation. However, attribute information has the potential to not only provide identity and class information, but it may also improve data association and kinematic tracking performance, Bayesian Belief Networks provide a framework for specifying the dependencies between kinematic and attribute states. Algorithms based on this framework are developed for joint kinematic and attribute data association, kinematic tracking, attribute state estimation, and joint kinematic and attribute tracking. The algorithms are demonstrated using simulated tracking scenarios.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号