首页> 外文期刊>Journal of Pipeline Systems Engineering and Practice >Underground Sewer Networks Renewal Complexity Assessment and Trenchless Technology: A Bayesian Belief Network and GIS Framework
【24h】

Underground Sewer Networks Renewal Complexity Assessment and Trenchless Technology: A Bayesian Belief Network and GIS Framework

机译:地下下水道网络更新复杂性评估和无沟技术:贝叶斯信念网络和GIS框架

获取原文
获取原文并翻译 | 示例

摘要

Significant investment is required to upgrade deteriorating underground sewer networks. Sewer failure and the subsequent rehabilitation process can have economic, social, and environmental impacts. It can disrupt critical urban function and adjacent utilities, such as telecom, electric, gas, and water supply lines. This paper identifies 48 indicators to assess the renewal complexity and the failure consequence of buried sewer pipes. A Bayesian belief network (BBN) model is used to capture dependencies among indicators, quantify uncertainty, and update belief when new information becomes available. Geographic information system (GIS) applications are used to collect and process model input data as well as visualize analysis results. The framework can identify locations where trenchless rehabilitation may be cost effective. Finally, the proposed method is demonstrated on a storm sewer network in the city of Vernon, Canada.
机译:需要大量投资来升级恶化的地下下水道网络。下水道故障和随后的修复过程可能会产生经济,社会和环境影响。它可能会破坏关键的城市功能以及邻近的公用设施,例如电信,电力,天然气和供水管线。本文确定了48个指标,以评估下水道埋管的更新复杂性和失败后果。贝叶斯信念网络(BBN)模型用于捕获指标之间的依存关系,量化不确定性并在有新信息可用时更新信念。地理信息系统(GIS)应用程序用于收集和处理模型输入数据以及可视化分析结果。该框架可以确定进行非开挖式修复可能具有成本效益的位置。最后,在加拿大弗农市的雨水管道网络中演示了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号