首页> 美国政府科技报告 >Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data.
【24h】

Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data.

机译:基于不完全数据的贝叶斯网络参数学习的有效算法。

获取原文

摘要

We propose a family of efficient algorithms for learning the parameters of a Bayesian network from incomplete data. Our approach is based on recent theoretical analyses of missing data problems, which utilize a graphical representation called the missingness graph. In the case of MCAR and MAR data, this graph need not be explicit, and yet we can still obtain closed form asymptotically consistent parameter estimates without the need for inference. When this missingness graph is explicated (based on background knowledge), even partially, we can obtain even more accurate estimates with less data. Empirically we illustrate how we can learn the parameters of large networks from large datasets which are beyond the scope of algorithms like EM (which require inference).

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号