首页> 美国政府科技报告 >Modified Bayesian Kriging for Noisy Response Problems for Reliability Analysis.
【24h】

Modified Bayesian Kriging for Noisy Response Problems for Reliability Analysis.

机译:改进的贝叶斯克里格法求解噪声响应问题的可靠性分析。

获取原文

摘要

This paper develops a new modified Bayesian Kriging (MBKG) surrogate modeling method for problems in which simulation analyses are inherently noisy and thus standard Kriging approaches fail to properly represent the responses. The purpose is to develop a method that can be used to carry out reliability analysis to predict probability of failure. The formulation of the MBKG surrogate modeling method is presented, and the full conditional distributions of the unknown MBKG parameters are presented. Using the full conditional distributions with a Gibbs sampling algorithm, Markov chain Monte Carlo is used to fit the MBKG surrogate model. A sequential sampling method that uses the posterior credible sets for inserting new design of experiment (DoE) sample points is proposed. The sequential sampling method is developed in such a way that the newly added DoE sample points will provide the maximum amount of information possible to the MBKG surrogate model, making it an efficient and effective way to reduce the number of DoE sample points needed. Therefore, the proposed method improves the posterior distribution of the probability of failure efficiently. To demonstrate the developed MBKG and sequential sampling methods, a 2-D mathematical example with added random noise is used. It is shown how, with the use of the sequential sample method, the posterior distribution of the probability of failure converges to capture the true probability of failure. A 3-D multibody dynamics (MBD) engineering block-car example illustrates an application of the new method to a simple engineering example for which standard Kriging methods fail.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号