首页> 美国政府科技报告 >Novel Analysis of Performance Classification and Workload Prediction Using Electroencephalography (EEG) Frequency Data.
【24h】

Novel Analysis of Performance Classification and Workload Prediction Using Electroencephalography (EEG) Frequency Data.

机译:利用脑电图(EEG)频率数据进行性能分类和工作量预测的新分析。

获取原文

摘要

Across the DOD each task an operator is presented with has some level of difficulty associated with it. This level of difficulty over the course of the task is also known as workload, where the operator is faced with varying levels of workload as he or she attempts to complete the task. The focus of the research presented in this thesis is to determine if those changes in workload can be predicted and to determine if individuals can be classified based on performance in order to prevent an increase in workload that would cause a decline in performance in a given task. Despite many efforts to predict workload and classify individuals with machine learning, the classification and predictive ability of Electroencephalography (EEG) frequency data has not been explored at the individual EEG Frequency band level. In a 711th HPW/RCHP Human Universal Measurement and Assessment Network (HUMAN) Lab study, 14 Subjects were asked to complete two tasks over 16 scenarios, while their physiological data, including EEG frequency data, was recorded to capture the physiological changes their body went through over the course of the experiment. The research presented in this thesis focuses on EEG frequency data, and its??? ability to predict task performance and changes in workload. Several machine learning techniques are explored in this thesis before a final technique was chosen. This thesis contributes research to the medical and machine learning fields regarding the classification and workload prediction efficacy of EEG frequency data. Specifically, it presents a novel investigation of five EEG frequencies and their individual abilities to predict task performance and workload. It was discovered that using the Gamma EEG frequency and all EEG frequencies combined to predict task performance resulted in average classification accuracies of greater than 90%.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号