首页> 美国政府科技报告 >Study into Discontinuous Galerkin Methods for the Second Order Wave Equation.
【24h】

Study into Discontinuous Galerkin Methods for the Second Order Wave Equation.

机译:二阶波动方程的间断Galerkin方法研究。

获取原文

摘要

There are numerous numerical methods for solving different types of partial differential equations (PDEs) that describe the physical dynamics of the world. For instance, PDEs are used to understand fluid flow for aerodynamics, wave dynamics for seismic exploration, and orbital mechanics. The goal of these numerical methods is to approximate the solution to a continuous PDE with an accurate discrete representation. The focus of this thesis is to explore a new Discontinuous Galerkin (DG) method for approximating the second order wave equation in complex geometries with curved elements. We begin by briefly highlighting some of the numerical methods used to solve PDEs and discuss the necessary concepts to understand DG methods. These concepts are used to develop a one- and two-dimensional DG method with an upwind flux, boundary conditions, and curved elements. We demonstrate convergence numerically and prove discrete stability of the method through an energy analysis.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号