首页> 美国政府科技报告 >Linear Combination of Heuristics Approach to Spatial Sampling Hyperspectral Data for Target Tracking
【24h】

Linear Combination of Heuristics Approach to Spatial Sampling Hyperspectral Data for Target Tracking

机译:用于目标跟踪的启发式空间采样高光谱数据线性组合

获取原文

摘要

Persistent surveillance of the battlespace results in better battlespace awareness which aids in obtaining air superiority, winning battles, and saving friendly lives. Although hyperspectral imagery (HSI) data has proven useful for discriminating targets, it presents many challenges as a useful tool in persistent surveillance. A new sensor under development has the potential of overcoming these challenges and transforming our persistent surveillance capability by providing HSI data for a limited number of pixels and grayscale video for the remainder. The challenge of exploiting this new sensor is determining where the HSI data in the sensor's field of view will be the most useful. The approach taken is to use a utility function with components of equal dispersion, periodic poling, missed measurements, and predictive probability of association error (PPAE). The relative importance or optimal weighting of the different types of TOI is accomplished by a genetic algorithm using a multi-objective problem formulation. Experiments show using the utility function with equal weighting results in superior target tracking compared to any individual component by itself, and the equal weighting in close to the optimal solution. The new sensor is successfully exploited resulting in improved persistent surveillance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号