首页> 外文会议>Evolutionary and Bio-inspired Computation: Theory and Applications II >A Genetic Algorithm Approach to Optimal Spatial Sampling of Hyperspectral Data for Target Tracking
【24h】

A Genetic Algorithm Approach to Optimal Spatial Sampling of Hyperspectral Data for Target Tracking

机译:用于目标跟踪的高光谱数据最佳空间采样的遗传算法

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral imagery (HS1) data has proven useful for discriminating targets, however the relatively slow speed at which HS1 data is gathered for an entire frame reduces the usefulness of fusing this information with grayscale video. A new sensor under development has the ability to provide HSI data for a limited number of pixels while providing grayscale video for the remainder of the pixels. The HSI data is co-registered with the grayscale video and is available for each frame. This paper explores the exploitation of this new sensor for target tracking. The primary challenge of exploiting this new sensor is to determine where the gathering of HSI data will be the most useful. We wish to optimize the selection of pixels for which we will gather HSI data. We refer to this as spatial sampling. It is proposed that spatial sampling be solved using a utility function where pixels receive a value based on their nearness to a target of interest (TOI). The TOIs are determined from the tracking algorithm providing a close coupling of the tracking and the sensor control. The relative importance or weighting of the different types of TOI will be accomplished by a genetic algorithm. Tracking performance of the spatially sampled tracker is compared to both tracking with no HSI data and although physically unrealizable, tracking with complete HSI data to demonstrate its effectiveness within the upper and lower bounds.
机译:高光谱图像(HS1)数据已被证明可用于区分目标,但是在整个帧中收集HS1数据的速度相对较慢,因此降低了将该信息与灰度视频融合的有用性。正在开发的新型传感器能够为有限数量的像素提供HSI数据,同时为其余像素提供灰度视频。 HSI数据与灰度视频共同注册,并且可用于每一帧。本文探索了这种用于目标跟踪的新型传感器的开发。利用这种新型传感器的主要挑战是确定在哪里收集HSI数据将是最有用的。我们希望优化将为其收集HSI数据的像素的选择。我们将此称为空间采样。提出了使用效用函数来解决空间采样的问题,在该函数中,像素根据其与感兴趣目标(TOI)的接近程度接收值。从跟踪算法确定TOI,从而提供跟踪与传感器控制的紧密耦合。不同类型的TOI的相对重要性或权重将通过遗传算法来实现。将空间采样跟踪器的跟踪性能与没有HSI数据的跟踪和虽然物理上无法实现的跟踪进行了比较,但使用完整的HSI数据进行跟踪以证明其在上下限内的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号