首页> 美国政府科技报告 >Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine- Grained Al-Mg Alloy
【24h】

Tensile Deformation and Fracture Mechanism of Bulk Bimodal Ultrafine- Grained Al-Mg Alloy

机译:大块双峰超细晶粒al-mg合金的拉伸变形与断裂机制

获取原文

摘要

The tensile fractures of ultrafine-grained (UFG) Al-Mg alloy with a bimodal grain size were investigated at the micro- and macroscale using transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with focused ion beam (FIB), and optical microscopy. The nanoscale voids and crack behaviors near the tensile fracture surfaces were revealed in various scale ranges and provided the evidence to determine the underlying tensile deformation and fracture mechanisms associated with the bulk bimodal metals. The bimodal grain structures exhibit unusual deformation and fracture mechanisms similar to ductile-phase toughening of brittle materials. The ductile coarse grains in the UFG matrix effectively impede propagation of microcracks, resulting in enhanced ductility and toughness while retaining high strength. In view of the observations collected, we propose a descriptive model for tensile deformation and fracture of bimodal UFG metals.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号