首页> 美国政府科技报告 >Finite Element Simulation and Assessment of Single-Degree-of-Freedom Prediction Methodology for Insulated Concrete Sandwich Panels Subjected to Blast Loads
【24h】

Finite Element Simulation and Assessment of Single-Degree-of-Freedom Prediction Methodology for Insulated Concrete Sandwich Panels Subjected to Blast Loads

机译:爆炸荷载作用下绝缘混凝土夹层板单自由度预测方法的有限元模拟与评估

获取原文

摘要

This report discusses simulation methodologies used to analyze large deflection static and dynamic behavior of foam-insulated concrete sandwich wall panels. Both conventionally reinforced cast-on-site panels and precast/prestressed panels were considered. The experimental program used for model development and validation involved component-level testing as well as both static and dynamic testing of full-scale wall panels. The static experiments involved single spans and double spans subjected to near-uniform distributed loading. The dynamic tests involved spans up to 30 ft tall that were subjected to impulse loads generated by an external explosion. Primary modeling challenges included: (1) accurately simulating prestressing initial conditions in an explicit dynamic code framework, (2) simulating the concrete, reinforcement, and foam insulation in the high strain rate environment, and (3) simulating shear transfer between wythes, including frictional slippage and connector rupture. Correlation challenges, conclusions and recommendations regarding efficient and accurate modeling techniques are highlighted. The modeling methodologies developed were used to conduct additional behavioral studies and help to assess single-degree-of-freedom prediction methodology developed for foam-insulated precast/prestressed sandwich panels for blast loads.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号