首页> 美国政府科技报告 >Linear-Quadratic Control of a MEMS Micromirror using Kalman Filtering
【24h】

Linear-Quadratic Control of a MEMS Micromirror using Kalman Filtering

机译:利用卡尔曼滤波对mEms微镜进行线性二次控制

获取原文

摘要

The deflection limitations of electrostatic flexure-beam actuators are well known. Specifically, as the beam is actuated and the gap traversed, the restoring force necessary for equilibrium increases proportionally with the displacement to first order, while the electrostatic actuating force increases with the inverse square of the gap. Equilibrium, and thus stable open-loop voltage control, ceases at one-third the total gap distance, leading to actuator snap-in. A Kalman Filter is designed with an appropriately complex state dynamics model to accurately estimate actuator deflection given voltage input and capacitance measurements, which are then used by a Linear Quadratic controller to generate a closed-loop voltage control signal. The constraints of the latter are designed to maximize stable control over the entire gap. The design and simulation of the Kalman Filter and controller are presented and discussed, with static and dynamic responses analyzed, as applied to basic, 100 micrometer by 100 micrometer square, flexure-beam-actuated micromirrors fabricated by PolyMUMPs. Successful application of these techniques enables demonstration of smooth, stable deflections of 50% and 75% of the gap.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号