首页> 美国政府科技报告 >THREE-POINT HYPERBOLIC EXTRAPOLATION TO SOLVE EQUATIONS
【24h】

THREE-POINT HYPERBOLIC EXTRAPOLATION TO SOLVE EQUATIONS

机译:求解方程的三点双曲型外推法

获取原文

摘要

Three-point parabolic extrapolation to iteratively solve real or complex, algebraic or transcendental equations has been proposed by D. E: Muller and used frequently on automatic computers, particularly in determination of eigenvalues of matrices. It is suggested in this Memorandum that three-point equilateral hyperbolic extrapolation enjoys the same reasons for adoptions as parabolic extrapolation, but has the added advantages that one avoids at each iteration a' square root determination, a sign determination, and the necessity of guarding against the possibility of. being thrust into the complex domain when seeking real roots of real equations.nIt is also shown that the order of convergence is the same as that of parabolic extrapolation.

著录项

  • 作者

    M. L. Juncosa;

  • 作者单位
  • 年度 1964
  • 页码 1-17
  • 总页数 17
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号