首页> 美国政府科技报告 >Asymptotic Minimax and Admissibility in Estimation
【24h】

Asymptotic Minimax and Admissibility in Estimation

机译:渐近极小极大值与估计中的可容许性

获取原文

摘要

A sequence of general experiments is considered over a k-dimensional parameter. Under conditions of local asymptotic normality (LAN) of the families of distributions, we prove that, from the point of view of the local asymptotic minimax, there is a lower bound, which may be obtained only if the estimator has certain linear relation to the derivative of the likelihood function. This entails asymptotic normality with Fisher's variance. Conditions LAN are proved under the sole condition of continuity of Fisher's information. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号