首页> 美国政府科技报告 >Entry of Yersinia Pestis into the Viable but Nonculturable State in a Low-Temperature Tap Water Microcosm
【24h】

Entry of Yersinia Pestis into the Viable but Nonculturable State in a Low-Temperature Tap Water Microcosm

机译:耶尔森氏菌在低温自来水微观世界中进入可行但不可培养的状态

获取原文

摘要

Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radio-labeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号