首页> 美国政府科技报告 >Optimally Bounded Score Functions for Generalized Linear Models with Applications to Logistic Regression.
【24h】

Optimally Bounded Score Functions for Generalized Linear Models with Applications to Logistic Regression.

机译:广义线性模型的最优有界分数函数及其在Logistic回归中的应用。

获取原文

摘要

We study optimally bounded score functions for estimating regression parameters in a generalized linear model. Our work extends results obtained by Krasker and Welsch (1982) for the linear model and provides a simple proof of Krasker and Welsch's first-order condition for strong optimality. The application of these results to logistic regression is studied in some detail with an example given comparing the bounded-influence estimator with maximum likelihood. Keywords: Reprints. (kr)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号