首页> 外文期刊>Model assisted statistics and applications >Approximations of the power functions for Wald, likelihood ratio, and score tests and their applications to linear and logistic regressions
【24h】

Approximations of the power functions for Wald, likelihood ratio, and score tests and their applications to linear and logistic regressions

机译:沃尔德,似然比和分数测试的功率函数的近似值及其应用于线性和逻辑回归

获取原文
获取原文并翻译 | 示例

摘要

Traditionally, asymptotic tests are studied and applied under local alternative. There exists a widespread opinion that the Wald, likelihood ratio, and score tests are asymptotically equivalent. We dispel this myth by showing that These tests have different statistical power in the presence of nuisance parameters. The local properties of the tests are described in terms of the first and second derivative evaluated at the null hypothesis. The comparison of the tests are illustrated with two popular regression models: linear regression with random predictor and logistic regression with binary covariate. We study the aberrant behavior of the tests when the distance between the null and alternative does not vanish with the sample size. We demonstrate that these tests have different asymptotic power. In particular, the score test is generally asymptotically biased but slightly superior for linear regression in a close neighborhood of the null. The power approximations are confirmed through simulations.
机译:传统上,在局部替代方案下研究并应用了渐近试验。存在普遍认为沃尔德,似然比和得分测试是渐近的等价物。我们通过表明这些测试在存在滋扰参数存在下具有不同的统计功率来消除这种神话。测试的局部属性在零假设在零假设中评估的第一和第二衍生物来描述。测试的比较用两个流行的回归模型说明:与随机预测器的线性回归和与二进制协变量的逻辑回归。当NULL和替代方案之间的距离不会随着样本大小消失时,我们研究了测试的异常行为。我们证明这些测试具有不同的渐近力。特别地,得分测试通常是渐近的偏置,但在空的紧密邻域中线性回归略有优于偏向。通过仿真确认功率近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号