首页> 美国政府科技报告 >Redundancy Resolution of Manipulators through Torque Optimization
【24h】

Redundancy Resolution of Manipulators through Torque Optimization

机译:通过转矩优化实现机器人的冗余分辨率

获取原文

摘要

Methods for resolving kinematic redundancies of manipulators by the effect on joint torque are examined. When the generalized inverse is formulated in terms of accelerations and incorporated into the dynamics, the effect of redundancy resolution on joint torque can be directly reflected. One method chooses the joint acceleration null-space vector to minimize joint torque in a least squares sense; when the least squares is weighted by allowable torque range, the joint torques tend to be kept within their limits. Contrasting methods employing only the pseudoinverse with and without weighting by the inertia matrix are presented. The results show an unexpected stability problem during long trajectories for the null-space methods and for the inertia-weighted pseudoinverse method, but rarely for the unweighted pseudoinverse method. Evidently a whiplash action develops over time that thrusts the endpoint off the intended path, and extremely high torques are required to overcome these natural movement dynamics. Keywords: Robotics; Manipulator dynamics; and Robots. (Author)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号