首页> 美国政府科技报告 >Relaxation Algorithms Based on Markov Random Fields
【24h】

Relaxation Algorithms Based on Markov Random Fields

机译:基于马尔可夫随机场的松弛算法

获取原文

摘要

Many computer vision problems can be formulated as computing the minimum energy states of thermal dynamic systems. However, due to the complexity of the energy functions, the solutions to the minimization problem are very difficult to acquire in practice. Stochastic and deterministic methods exist to approximate the solutions, but they fail to be both efficient and robust. This paper describes a new deterministic method--the Highest Confidence First algorithm--to approximate the minimum energy solution to the image labeling problem under the Maximum A Posteriori (MAP) criterion. This method uses Markov Random Fields to model spatial prior knowledge of images and likelihood probabilities to represent external observations regarding hypotheses of image entities. Following an order decided by a dynamic stability measure, the image entities make make local estimates based on the combined knowledge of priors and observations. The solutions so constructed compare favorably to the ones produced by existing methods and that the computation is more predictable and less expensive. Keywords: Image segmentation; Bayesian approach.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号