首页> 美国政府科技报告 >Using Backpropagation to Learn the Dynamics of a Real Robot Arm.
【24h】

Using Backpropagation to Learn the Dynamics of a Real Robot Arm.

机译:使用反向传播来学习真实机器人手臂的动力学。

获取原文

摘要

Computing the inverse dynamics of a robot arm is an active area of research in the control literature. We apply a back propagation network to this problem and measure its performance on the CMU Direct-Drive Arm II for a family of pick and place trajectories. Trained on a random sample of these trajectories, the network is shown to generalize top new samples drawn from the same family. The weights developed during the learning phase are reminiscent of the velocity and acceleration filters used in standard control theory. Keywords: Robotics; Manipulators; Neural networks; Robot control; Learning manipulator dynamics; Artificial intelligence. (kt)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号