首页> 美国政府科技报告 >Binaural Sound Localization Using Neural Networks
【24h】

Binaural Sound Localization Using Neural Networks

机译:基于神经网络的双耳声音定位

获取原文

摘要

The purpose of this study was to investigate the use of Artificial NeuralNetworks to localize sound sources from simulated, human binaural signals. Only sound sources originating from a circle on the horizontal plane were considered. Experiments were performed to examine the ability of the networks to localize using three-different feature sets. The feature sets used were: time-samples of the signals, mena Fast Fourier Transform magnitude and cross correlation data, and auto-correlation and cross correlation data. The two different types of sound source signals considered were tones and gaussian noise. The feature set which yielded the best results in terms of classification accuracy (over 91%) for both tones and noise was the auto-correlation and cross-correlation data. These results were achieved using 18 classes (20 per class). The other two feature sets did not produce accuracy results as high or as consistent between the two signal types. When using time-samples of the signals as features it was observed that in order to accurately classify tones of random-frequency, it was necessary to train with random-frequency tones rather than with tones of one, or a few discrete frequencies.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号