首页> 美国政府科技报告 >Boundary Value Problems for Surfaces of Constant Gauss Curvature. (Reannouncementwith New Availability Information)
【24h】

Boundary Value Problems for Surfaces of Constant Gauss Curvature. (Reannouncementwith New Availability Information)

机译:常高斯曲率曲面的边值问题。 (重新公布新的可用性信息)

获取原文

摘要

The compact smooth surfaces in cu R with constant positive Gauss curvature (K-surfaces) form a natural class. A K-surface without boundary is itself the boundary of a convex body, so it must be embedded. The surfaces of interest to us have non-empty boundary and so are not necessarily embedded. A fundamental question is this: given a collection gamma = (C sub 1...,C sub n) of Jordan curves in Cu R, what are the K-surfaces with boundary gamma for example, if gamma is a single Jordan curve with no inflection points, does gamma bound a K-surface

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号