首页> 美国政府科技报告 >Non-Local Thermodynamic Equilibrium in Laser Sustained Plasmas
【24h】

Non-Local Thermodynamic Equilibrium in Laser Sustained Plasmas

机译:激光持续等离子体中的非局部热力学平衡

获取原文

摘要

An argon laser sustained plasma (LSP) at atmospheric pressure has been studiedspectroscopically and the existence of a non-local thermodynamic state has been determined. The spectroscopic data consist of several argon neutral and ion line emissions used to spatially resolve electronic energy level population densities in each plasma species. A hydrogen seed is added to the argon flow for the purpose of determining electron number density by Stark broadening analysis of the Balmer series alpha line. Neutral and ionic argon electronic excitation temperatures are calculated from the spectroscopic data. Electron and heavy particle kinetic temperatures are calculated through the use of an appropriate nonequilibrium model which includes multitemperature gas state, and ionization equations. The dominant nonequilibrium effect in this plasma is kinetic nonequilibrium where the electron kinetic temperature can be more than twice the heavy particle kinetic temperature in high laser power flux regions. It is found that a local thermodynamic equilibrium (LTE) analysis of an ion upper energy level population density leads to an excellent prediction of ion number density. This is determined by comparison of the ion number density to the electron number density calculated through the hydrogen Stark broadening analysis, and assuming low temperature quasi-neutrality. Boltzmann equilibrium in the ionic argon system is indicated. LTE analysis of a neutral argon upper energy level population density leads to a very poor prediction of electron number density, but a fairly accurate prediction of neutral number density.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号