首页> 美国政府科技报告 >Diamond Deposition and Defect Chemistry Studied via Solid State NMR.
【24h】

Diamond Deposition and Defect Chemistry Studied via Solid State NMR.

机译:金刚石沉积和缺陷化学通过固态核磁共振研究。

获取原文

摘要

Diamond defects were quantified by nuclear magnetic resonance (NMR). While maintaining the macroscopic integrity of the films, concentrations between 0.001 and 1.0 at.% H were measured, among the lowest ever reported by solid-state 1H NMR. These concentrations were correlated to infrared absorption in the 8 to 10 micron region and to thermal conductivity. Despite the low concentrations. Multiple Quantum NMR reveals a high degree of hydrogen clustering consistent with grain boundary passivation. Most hydrogen is rigidly held, but some, probably in -OCH3 and -NCH3 defects, undergoes rotation at room temperature. Similar results were obtained for hot-filament, microwave-plasma and DC arc-jet films, suggesting a common surface chemistry, but no hydrogen was detected in an as-deposited combustion film. 13C NMR provided the first quantitative determination of non-diamond bonded carbon defects, providing a benchmark for Raman spectroscopy, the primary characterization method for diamond. Selective 13C labeling demonstrated heterogeneous reactions involving carbon occur at the hot-filament. With high-speed magic-angle-spinning 19F NMR, CFx (x=1-3) functionalities were resolved on the surface of plasma-treated diamond powder. Understanding these defects impacts the understanding of film growth mechanisms and structure-property relationships for CVD diamond. Diamond, NMR, CVD, Defects, Thin films, Isotopic substitution.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号