首页> 美国政府科技报告 >Clustering Learning Tasks and the Selective Cross-Task Transfer of Knowledge
【24h】

Clustering Learning Tasks and the Selective Cross-Task Transfer of Knowledge

机译:聚类学习任务和知识选择性跨任务转移

获取原文

摘要

Recently, there has been an increased interest in machine learning methods thatlearn from more than one learning task. Such methods have repeatedly found to outperform conventional, single-task learning algorithms when learning tasks are appropriately related. To increase robustness of these approaches, methods are desirable that can reason about the relatedness of individual learning tasks, in order to avoid the danger arising from tasks that are unrelated and thus potentially misleading. This paper describes the task-clustering (TC) algorithm. TC clusters learning tasks into classes of mutually related tasks. When facing a new thing to learn, TC first determines the most related task cluster, then exploits information selectively from this task cluster only. An empirical study carried out in a mobile robot domain shows that TC outperforms its unselective counterpart in situations where only a small number of tasks is relevant.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号