首页> 外文期刊>Physica, D. Nonlinear phenomena >Natural tangent dynamics with recurrent biorthonormalizations: A geometric computational approach to dynamical systems exhibiting slow manifolds and periodic/chaotic limit sets
【24h】

Natural tangent dynamics with recurrent biorthonormalizations: A geometric computational approach to dynamical systems exhibiting slow manifolds and periodic/chaotic limit sets

机译:具有递归生物正交归一化的自然切线动力学:具有慢流形和周期/混沌极限集的动力学系统的几何计算方法

获取原文
获取原文并翻译 | 示例

摘要

This article develops a geometric method, referred to as Natural Tangent Dynamics with Recurrent Biorthonormalizations (NTDRB), that unifies into a single computational technique the analysis of dynamical systems possessing either a slow manifold (associated with an equilibrium point), or exhibiting nontrivial limit sets (limit cycles and chaotic attractors). For the first class of systems the main focus relies on the identification of the slow/fast timescales, while for the latter (dynamics within nontrivial attractors) the central issue is the temporal dichotomy between unstable/stable components as described by the structure of the Lyapunov spectrum. The method is based on vector and covector dynamics in the tangent and cotangent bundles (induced by the phase-space flow), and on the periodic application of a biorthononnalization procedure which contrasts the natural tendencies of vectors and covectors to align towards the most unstable/slow subspaces. The NTDRB method provides the most convenient and natural vector and covector bases for: (i) the characterization of the fast timescales controlling the dynamic relaxation towards a slow manifold; (ii) the identification of the stable and unstable components of the dynamics on a limit set; (iii) the construction of a low-dimensional reduced model reproducing the asymptotic behavior of the original systems. (c) 2005 Elsevier B.V. All rights reserved.
机译:本文开发了一种几何方法,称为带有递归正交归一化的自然切线动力学(NTDRB),该方法将具有慢流形(与平衡点关联)或具有非平凡极限集的动力学系统的分析统一为一种计算技术(极限环和混沌吸引子)。对于第一类系统,主要重点在于对慢/快时标的识别,而对于后一时标(非平凡吸引子内的动力学),主要问题是不稳定/稳定组件之间的时间二分法,由李雅普诺夫的结构描述光谱。该方法基于相切束和相切束中的矢量和协矢量动力学(由相空间流引起),并基于生物仿制过程的周期性应用,该流程对比了矢量和协矢量自然趋向于最不稳定/慢子空间。 NTDRB方法为以下方面提供了最方便,最自然的矢量和协矢量基础:(i)表征快速时标,以控制向慢歧管的动态弛豫; (ii)在极限集上确定动力学的稳定和不稳定组成部分; (iii)低维简化模型的构造,该模型再现了原始系统的渐近行为。 (c)2005 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号