首页> 外文期刊>Physica, D. Nonlinear phenomena >Impact of nonlinearities and model error on pseudo-inverse calculations
【24h】

Impact of nonlinearities and model error on pseudo-inverse calculations

机译:非线性和模型误差对伪逆计算的影响

获取原文
获取原文并翻译 | 示例

摘要

Pseudo-inverse calculations have been made within the operational and research meteorological communities to identify components of the error in the initial state that are responsible for a significant portion of the forecast error. These calculations are based on the assumptions of a perfect model and linear perturbation growth, conditions not realizable in operational forecasting. In this study, the impact of nonlinearities and model error on pseudo-inverse calculations is investigated within an idealized framework using a simple atmospheric model. Forecasts are run within the perfect and imperfect model frameworks, with initial errors of varying sizes. Model error is introduced by changing the model dissipation terms. It is found that for pseudo-inverses composed of a small subset of the leading singular vectors (SVs), the nonlinear forecast correction is often better than the expected theoretical correction, indicating the suppression of error growth both inside and outside the linear pseudo-inverse subspace. As the size of the pseudo-inverse is increased, the nonlinear forecast correction starts to degrade. This forecast degradation coincides with a degradation in the analysis correction. It is possible to improve the forecast by degrading the analysis in the presence of model error, especially when the initial error is very small. However, for initial errors of reasonable magnitude, this is unlikely to happen in instances when the nonlinear forecast correction is better than the theoretical correction. Just as improving the initial state may suppress errors outside of the linear SV subspace, degrading it may likewise increase errors outside the SV subspace. This suggests that the size of the nonlinear correction relative to the expected theoretical correction may be useful in determining when pseudo-inverse perturbations are likely to have improved the analyses. Published by Elsevier B.V.
机译:已在运行和研究气象界内进行了伪逆计算,以识别初始状态下误差的组成部分,这些组成部分占预报误差的很大一部分。这些计算基于完美模型和线性扰动增长的假设,而这些条件在运营预测中无法实现。在这项研究中,使用简单的大气模型在理想化的框架内研究了非线性和模型误差对伪逆计算的影响。预测是在完美且不完善的模型框架内进行的,初始误差大小各异。通过更改模型耗散项来引入模型误差。发现对于由一小部分前导奇异矢量(SVs)组成的伪逆,非线性预测校正通常优于预期的理论校正,这表明在线性伪逆内部和外部都抑制了误差增长子空间。随着伪逆的大小增加,非线性预测校正开始降低。该预测的降级与分析校正的降级同时发生。在存在模型误差的情况下,可以通过降低分析质量来改善预测,尤其是当初始误差非常小时。但是,对于合理幅度的初始误差,在非线性预测校正优于理论校正的情况下,这不太可能发生。正如改善初始状态可以抑制线性SV子空间之外的错误一样,降低其初始状态也可能会增加SV子空间之外的错误。这表明,相对于预期的理论校正而言,非线性校正的大小可能有助于确定伪逆扰动何时可能会改善分析效果。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号