首页> 外文期刊>Physica, A. Statistical mechanics and its applications >Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part two: Solar flares dynamics
【24h】

Tsallis non-extensive statistics, intermittent turbulence, SOC and chaos in the solar plasma. Part two: Solar flares dynamics

机译:Tsallis非广泛的统计数据,间歇性湍流,SOC和太阳等离子体中的混沌。第二部分:太阳耀斑动力学

获取原文
获取原文并翻译 | 示例
       

摘要

In this study which is the continuation of the first part (Pavlos et al. 2012) [1], the nonlinear analysis of the solar flares index is embedded in the non-extensive statistical theory of Tsallis (1988) [3]. The q-triplet of Tsallis, as well as the correlation dimension and the Lyapunov exponent spectrum were estimated for the singular value decomposition (SVD) components of the solar flares timeseries. Also the multifractal scaling exponent spectrum f(a), the generalized Renyi dimension spectrum D(q) and the spectrum J(p) of the structure function exponents were estimated experimentally and theoretically by using theq-entropy principle included in Tsallis non-extensive statistical theory, following Arimitsu and Arimitsu (2000) [25]. Our analysis showed clearly the following: (a) a phase transition process in the solar flare dynamics from a high dimensional non-Gaussian self-organized critical (SOC) state to a low dimensional also non-Gaussian chaotic state, (b) strong intermittent solar corona turbulence and an anomalous (multifractal) diffusion solar corona process, which is strengthened as the solar corona dynamics makes a phase transition to low dimensional chaos, (c) faithful agreement of Tsallis non-equilibrium statistical theory with the experimental estimations of the functions: (i) non-Gaussian probability distribution function P(x), (ii) f(a) and D(q), and (iii) J(p) for the solar flares timeseries and its underlying non-equilibrium solar dynamics, and (d) the solar flare dynamical profile is revealed similar to the dynamical profile of the solar corona zone as far as the phase transition process from self-organized criticality (SOC) to chaos state. However the solar low corona (solar flare) dynamical characteristics can be clearly discriminated from the dynamical characteristics of the solar convection zone.
机译:在本研究中,这是第一部分的延续(Pavlos等,2012)[1],太阳耀斑指数的非线性分析被嵌入到Tsallis(1988)的非扩展统计理论中[3]。针对太阳耀斑时间序列的奇异值分解(SVD)分量,估计了Tsallis的三重三元组以及相关维数和Lyapunov指数谱。并利用Tsallis非广义统计中包含的q熵原理,通过实验和理论估算了多重分形标度指数谱f(a),广义人意维数谱D(q)和结构函数指数的谱J(p)。理论,遵循有光和有光(2000)[25]。我们的分析清楚地表明:(a)太阳耀斑动力学中的一个相变过程,从高维非高斯自组织临界(SOC)态到低维非高斯混沌态,(b)强间歇性太阳电晕湍流和异常(多重分形)扩散太阳电晕过程,随着太阳电晕动力学使相变转变为低维混沌,该过程得到了加强;(c)沙里斯非平衡统计理论与函数的实验估计值的真实一致:(i)太阳耀斑时间序列及其潜在的非平衡太阳动力学的非高斯概率分布函数P(x),(ii)f(a)和D(q),以及(iii)J(p), (d)在从自组织临界度(SOC)到混沌状态的相变过程中,太阳耀斑的动力学轮廓与太阳日冕区域的动力学轮廓相似。但是,可以将太阳低电晕(太阳耀斑)的动力特性与太阳对流区的动力特性清楚地区分开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号