...
首页> 外文期刊>Philosophical magazine: structure and properties of condensed matter >Void growth in bcc metals simulated with molecular dynamics using the Finnis–Sinclair potential
【24h】

Void growth in bcc metals simulated with molecular dynamics using the Finnis–Sinclair potential

机译:使用Finnis–Sinclair势用分子动力学模拟的密件抄送金属中的空洞生长

获取原文
获取原文并翻译 | 示例
           

摘要

The process of fracture in ductile metals involves the nucleation, growth,and linking of voids. This process takes place both at the low rates involved in typical engineering applications and at the high rates associated with dynamic fracture processes such as spallation. Here we study the growth of a void in a single crystal at high rates using molecular dynamics (MD) based on Finnis–Sinclair interatomic potentials for the body-centred cubic (bcc) metals V, Nb, Mo, Ta, and W. The use of the Finnis–Sinclair potential enables the study of plasticity associated with void growth at the atomic level at room temperature and strain rates from 109/s down to 106/s and systems as large as 128 million atoms. The atomistic systems are observed to undergo a transition from twinning at the higher end of this range to dislocation flow at the lower end. We analyse the simulations for the specific mechanisms of plasticity associated with void growth as dislocation loops are punched out to accommodate the growing void. We also analyse the process of nucleation and growth of voids in simulations of nanocrystalline Ta expanding at different strain rates. We comment on differences in the plasticity associated with void growth in the bcc metals compared to earlier studies in face-centred cubic (fcc) metals.
机译:韧性金属的断裂过程涉及空隙的成核,生长和连接。该过程既以典型工程应用中涉及的低速率发生,也以与动态断裂过程(例如散裂)相关的高速率发生。在这里,我们基于分子中心立方(bcc)金属V,Nb,Mo,Ta和W的Finnis–Sinclair原子间势,使用分子动力学(MD)研究了单晶中空洞的高速生长。使用Finnis-Sinclair势能研究与在室温下原子级的空洞生长以及从109 / s到106 / s的应变速率以及高达1.28亿个原子的系统相关的可塑性。观察到原子系统经历了从该范围的较高端的孪晶到较低端的位错流的转变。我们分析了与空洞生长相关的可塑性的特定机制的模拟,因为位错环被冲出以适应不断增长的空洞。我们还分析了在不同应变速率下扩展的纳米Ta的模拟过程中空核的成核和生长过程。我们评论了与面心立方(fcc)金属中较早的研究相比,bcc金属中与空隙增长相关的可塑性差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号