首页> 外文期刊>Philosophical Magazine, A. Physics of condensed matter, defects and mechanical properties >Sputtering and the formation of nanometre voids and holes in aluminium in a scanning transmission electron microscope
【24h】

Sputtering and the formation of nanometre voids and holes in aluminium in a scanning transmission electron microscope

机译:扫描透射电子显微镜中铝的溅射及纳米空洞的形成

获取原文
获取原文并翻译 | 示例
       

摘要

Nanometre voids and holes have been produced in aluminium films up to 220 nm thick by the stationary focused 100 keV high-current-density electron probe in a dedicated scanning transmission electron microscope. The electron energy is below the threshold for bulk displacements in aluminium but is sufficient to cause sputtering of aluminium atoms from the electron-exit surface. The sputtering leads to the formation of a pit with a diameter determined by the electron probe size at the electron-exit surface. As the pit aspect ratio increases, atoms are sputtered from the pit base onto the pit side walls where they experience a much reduced electron intensity, rather than being sputtered directly out of the pit. Eventually the pit seals to leave a void, separated from the end of the small pit that remains at the electron-exit surface. By repeatedly interrupting the irradiation so as to image a projection of the irradiated volume, it is shown that the void then moves from near the electron-exit surface to the electron-entrance surface along the irradiated volume, presumably by electron-stimulated surface diffusion and sputtering of atoms around the void faces in the general direction of the flow of electrons. The process of pit growth and void formation at the electron-exit surface repeats itself, producing a row of voids extending away from the electron-exit surface along the irradiated volume. Under continuous irradiation, the voids formed in the irradiated volume have lengths of 25-30 nm, independent of sample thickness, and diameters comparable with the electron-beam diameter at the electron-exit surface, which increases with thickness owing to electron-lattice atom elastic scattering. Voids reaching the electron-entrance surface cause the growth of a pit at the surface, which eventually forms a continuous hole through the aluminium. Monte Carlo simulations have been used to follow the electron trajectories and estimate electron-exit surface sputtering rates for scanning transmission electron microscopy (STEM) electron probes with near-Gaussian radial intensity distributions used in this study. The simulations are consistent with the void formation rates observed and the total time for hole formation of typically tens of minutes for the 0.1-1 nA STEM electron probes of 2 nm diameter used.
机译:在专用扫描透射电子显微镜中,通过固定聚焦的100 keV高电流密度电子探针在高达220 nm的铝膜中产生了纳米空洞。电子能量低于铝中整体位移的阈值,但足以引起铝原子从电子出口表面溅射。溅射导致形成凹坑,该凹坑的直径由电子出射表面上的电子探针尺寸决定。随着凹坑长宽比的增加,原子从凹坑底部溅射到凹坑侧壁上,在那里它们经历的电子强度大大降低,而不是直接从凹坑中溅射出来。最终,凹坑密封,留下一个空隙,该空隙与保留在电子出口表面的小凹坑的末端分开。通过反复中断照射以对照射体积的投影进行成像,可以显示空隙随后沿着照射体积从电子输出表面附近移动到电子入射表面,大概是通过电子刺激的表面扩散和围绕空洞的原子溅射沿电子流的一般方向进行。凹坑的生长和在电子出口表面形成空隙的过程会自我重复,从而产生一排空隙,沿着辐射体积从电子出口表面向外延伸。在连续辐照下,在辐照体积中形成的空隙的长度为25-30 nm(与样品厚度无关),并且直径与电子出射表面的电子束直径相当,并且由于电子晶格原子而随着厚度的增加而增大弹性散射。到达电子入口表面的空隙会引起表面凹坑的生长,最终形成贯穿铝的连续孔。蒙特卡洛模拟已用于跟踪电子轨迹,并估计本研究中使用的具有近高斯径向强度分布的扫描透射电子显微镜(STEM)电子探针的电子出口表面溅射速率。该模拟与所观察到的空隙形成速率以及所使用的直径为2 nm的0.1-1 nA STEM电子探针的空穴形成总时间通常为数十分钟是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号