首页> 外文学位 >Characterization of multiphase polymer morphology with electron energy-loss spectroscopy in the scanning transmission electron microscope.
【24h】

Characterization of multiphase polymer morphology with electron energy-loss spectroscopy in the scanning transmission electron microscope.

机译:在扫描透射电子显微镜中用电子能量损失光谱法表征多相聚合物形态。

获取原文
获取原文并翻译 | 示例

摘要

The traditional methods for studying polymer microstructure in the transmission electron microscope largely hinge on the use of differential heavy-element staining to induce amplitude contrast. However, adequate staining agents are not available for all polymer systems. Furthermore, nonlinearities, in the distribution of stain, particularly at interfaces, degrade the achievable resolution. Spatially-resolved electron energy-loss spectroscopy (EELS) provides a new opportunity to study polymer morphology with its ability to detect a broad range of rich spectroscopic features at high spatial resolution. This thesis demonstrates the applicability of spatially-resolved EELS to the study of polymer morphology using homopolymer blends of nylon/HDPE, PS/PE, PS/PVP, and PPS/PET. Optimal use of this technique is governed by three main factors: (i) the availability of spectral fingerprints distinguishing various polymers; (ii) the limits of achievable resolution; and (iii) the ultimate constraints imposed by electron irradiation. These issues are addressed and quantified in both the low-loss and core-loss regimes using spatially resolved studies of polystyrene homopolymer and polystyrene/poly(vinylpyridine) (PS/PVP) blends, respectively. Valence EELS studies of polystyrene show that fast secondary electrons (FSE) play a major role in polystyrene radiation chemistry. FSE are energetically favorable to induce changes in polystyrene aromaticity via C-K shell electron ionization because their energy ranges from ∼2 keV to E0, where E0 is the incident electron energy (200 keV). The C-K shell electron ionization-cross-section for lower energy FSE can be 2 orders of magnitude higher than that for FSE with energies of order tens of keV or more. Furthermore, those FSE that possess lower energy (∼2--10 keV) propagate with a trajectory that is almost orthogonal to the incident electron beam direction. Therefore, FSE can degrade polystyrene aromaticity well beyond the area that is probed by the incident electrons. These two characteristics of FSE ultimately define the spatial resolution limit and signal quality available from spatially-resolved valence EELS of polystyrene. The ultimate spatial resolution attainable from core-loss spectroscopy is limited by the accuracy with which one can model the collected spectroscopic data. Data processing and signal extraction become critical in the core-loss region due to the small inelastic scattering cross-section and hence relatively low signal-to-background ratio is expected in this energy range. These issues are discussed in the context of nanometer-scale profiling of the PS/PVP homopolymer interface. The background-subtracted integrated nitrogen signal was used to spatially map the distribution of PVP across this interface. After deconvolving the broadening effects of the incident electron intensity distribution, the PS/PVP interface was found to have a hyperbolic tangent type functional form in agreement with theoretical treatments. The interface width was determined to equal 4.5 nm and is in good agreement with independent measurements by neutron reflectivity in lamellar PS-PVP diblock copolymers.
机译:在透射电子显微镜中研究聚合物微观结构的传统方法很大程度上取决于使用差分重元素染色来诱发振幅对比。但是,并非所有聚合物体系都具有足够的染色剂。此外,污渍分布,尤其是界面处的非线性会降低可实现的分辨率。空间分辨电子能量损失谱(EELS)提供了一个研究聚合物形态的新机会,因为它能够以高空间分辨率检测多种丰富的光谱特征。本文证明了空间分辨EELS在尼龙/ HDPE,PS / PE,PS / PVP和PPS / PET均聚物共混物研究聚合物形态方面的适用性。该技术的最佳使用受三个主要因素制约:(i)区分各种聚合物的光谱指纹的可用性; (ii)可达到的解决方案的极限; (iii)电子辐照施加的最终限制。使用聚苯乙烯均聚物和聚苯乙烯/聚(乙烯基吡啶)(PS / PVP)共混物的空间分辨研究,可以在低损耗和芯损耗两种情况下解决和量化这些问题。聚苯乙烯的价EELS研究表明,快速二次电子(FSE)在聚苯乙烯辐射化学中起主要作用。 FSE在能量上有利于通过C-K壳电子电离诱导聚苯乙烯芳烃的变化,因为它们的能量范围从〜2 keV到E0,其中E0是入射电子能量(200 keV)。能量较低的FSE的C-K壳电子电离截面可以比能量为keV几十或更高的FSE高2个数量级。此外,那些能量较低(约2--10 keV)的FSE以几乎垂直于入射电子束方向的轨迹传播。因此,FSE可以大大降低聚苯乙烯的芳香性,使其超出入射电子探测到的区域。 FSE的这两个特征最终定义了空间分辨率极限和可从聚苯乙烯的空间分辨价EELS获得的信号质量。岩心损耗光谱法可获得的最终空间分辨率受到人们对收集的光谱数据建模的准确性的限制。由于非弹性散射横截面小,因此数据处理和信号提取在纤芯损耗区域变得至关重要,因此在该能量范围内预期信噪比相对较低。这些问题是在PS / PVP均聚物界面的纳米级轮廓分析中讨论的。减去背景的积分氮信号用于空间映射PVP在该界面上的分布。在对入射电子强度分布的展宽效应进行解卷积后,发现PS / PVP界面具有双曲线正切类型的功能形式,与理论处理一致。界面宽度确定为等于4.5 nm,并且与层状PS-PVP二嵌段共聚物中的中子反射率的独立测量结果非常吻合。

著录项

  • 作者

    Siangchaew, Krisda.;

  • 作者单位

    Stevens Institute of Technology.;

  • 授予单位 Stevens Institute of Technology.;
  • 学科 Chemistry Polymer.;Engineering Materials Science.;Physics General.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:48:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号