首页> 美国卫生研究院文献>Journal of the Royal Society Interface >The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure
【2h】

The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen–mineral structure

机译:骨的纳米级生理学:胶原-矿物质结构的空间建模和扫描透射电子显微镜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral (‘bioapatite’) is present predominantly inside collagen fibrils: in ‘gap channels’ between abutting collagen molecules, and in ‘intermolecular spaces’ between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues.
机译:骨中胶原蛋白和生物磷灰石的纳米级结构确定了骨骼的物理特性,包括强度和韧性。然而,骨内的纳米结构组织尚不为人所知,并且存在争议。广为接受的模型假设,磷灰石矿物质(“生物磷灰石”)主要存在于胶原蛋白纤维内部:邻接胶原蛋白分子之间的“间隙通道”,以及相邻胶原蛋白分子之间的“分子间空间”。但是,最近的研究报道了大量原纤维状生物磷灰石的证据,对这一假设提出了挑战。我们使用电子能量损失谱和高角度环形暗场成像技术通过扫描透射电子显微镜(STEM)研究了小鼠骨骼中生物磷灰石和胶原的纳米结构。此外,我们开发了空间模型来估算间隙通道内生物磷灰石的堆积密度。我们的空间模型和STEM结果限制了在缝隙通道内小于或等于0.42且在分子间重叠区域内小于或等于0.28的原纤维中分布的总生物磷灰石比例。因此,骨骼的生物磷灰石的很大一部分(大于或等于0.3)必须位于原纤维的外部。此外,我们观察到未矿化的胶原原纤维之间的原纤维状生物磷灰石,表明最初的生物磷灰石成核和生长并不局限于某些模型中假设的间隙通道。这些结果对部分矿化和发育组织的力学具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号