...
【24h】

Lithography for enabling advances in integrated circuits and devices

机译:光刻技术促进集成电路和器件的发展

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248nm and 193nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.
机译:由于晶体管是按体积制造的,因此光刻技术可以提高器件和集成电路的密度。利用集成电路的发明,光刻技术通过光学光刻技术的发展应用而实现了更高密度的场效应晶体管的集成。 1994年,半导体行业确定了继续提高密度晶体管的难度越来越大,并且需要光刻和工艺能力的协调发展。它建立了美国国家半导体技术路线图,并于1999年将其扩展为国际半导体技术路线图,以使多个行业保持一致,以提供复杂的功能,以将集成电路的密度继续提高到纳米级。自1960年代以来,随着从接触式打印机到步进机,i-line,248nm和193nm波长的图案缩小技术的发展,光刻技术变得越来越复杂,这需要对掩模制造技术,光刻印刷和对准功能以及光刻胶功能进行重大改进。 。同时,图案转移已从特征的湿法刻蚀发展到等离子刻蚀和更复杂的刻蚀能力,以制造目前在大批量生产中32 nm的特征。为了继续增加设备和互连的密度,将需要新的图案转移技术以及未来的选择,包括极紫外光刻,压印技术和定向自组装。尽管互补金属氧化物半导体将继续扩展许多年,但是这些先进的图案转移技术可能会在未来使基于不同物理现象的新型存储器和逻辑技术的开发成为可能,以增强和扩展信息处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号