...
【24h】

Flower colour and cytochromes P450

机译:花色和细胞色素P450

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated.anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidinproducing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.
机译:细胞色素P450在类黄酮及其有色化合物花色苷的生物合成中起着重要作用,两者都是主要的花卉色素。花青素(花青素的生色团和前体)的B环上的羟基数量影响花青素的颜色,颜色越蓝。羟化模式由两种细胞色素P450,类黄酮3'-羟化酶(F3'H)和类黄酮3',5'-羟化酶(F3'5'H)决定,因此它们在确定花色中起着至关重要的作用。 F3'H和F3'5'H主要分别属于CYP75B和CYP75A,但菊科中的F3'5'Hs来源于CYP75B的基因复制和新功能化。玫瑰和康乃馨由于缺乏F3'5'H而缺乏蓝色/紫色花朵的颜色,因此缺乏基于delphinidin的B环三羟基化花青素。通过表达F3'5'H编码区,使康乃馨和玫瑰具有新颖的蓝色色调,花色苷生物合成途径成功地重定向至delphinidin。在产生翠雀黄素的植物中抑制F3′5′H和F3′H减少了花色素苷B环上的羟基数目,从而导致了基于pelargonidin的单羟基化花色素苷的产生,其花的颜色变为橙色/红色。可以使用单羟基化的二氢山emp酚(pelargonidin前体)的二氢黄酮醇4-还原酶的额外表达增强了紫草素的生物合成。黄酮合酶II(FNSII)催化由黄烷酮合成的黄酮也是P450(CYP93B)并有助于花色,因为黄酮充当花青素的辅助色素,并可能导致颜色发蓝和变暗。然而,由于花青素的减少,FNSII基因的转基因植物表达产生了较淡的花,因为黄烷酮是花青素和黄酮的前体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号