首页> 外文期刊>Pattern Recognition: The Journal of the Pattern Recognition Society >Improving vector space embedding of graphs through feature selection algorithms
【24h】

Improving vector space embedding of graphs through feature selection algorithms

机译:通过特征选择算法改善图形的向量空间嵌入

获取原文
获取原文并翻译 | 示例

摘要

Graph based pattern representation offers a versatile alternative to vectorial data structures. Therefore, a growing interest in graphs can be observed in various fields. However, a serious limitation in the use of graphs is the lack of elementary mathematical operations in the graph domain, actually required in many pattern recognition algorithms. In order to overcome this limitation, the present paper proposes an embedding of a given graph population in a vector space Rn. The key idea of this embedding approach is to interpret the distances of a graph g to a number of prototype graphs as numerical features of g. In previous works, the prototypes were selected beforehand with heuristic selection algorithms. In the present paper we take a more fundamental approach and regard the problem of prototype selection as a feature selection or dimensionality reduction problem, for which many methods are available. With several experiments we show the feasibility of graph embedding based on prototypes obtained from such feature selection algorithms and demonstrate their potential to outperform previous approaches.
机译:基于图形的模式表示提供了矢量数据结构的通用替代方案。因此,可以在各个领域中观察到对图形的日益增长的兴趣。但是,使用图形的一个严重限制是图形领域缺乏基本的数学运算,这在许多模式识别算法中实际上是必需的。为了克服这一限制,本文提出了将给定图种群嵌入向量空间Rn中的方法。这种嵌入方法的关键思想是将图g与许多原型图的距离解释为g的数值特征。在以前的工作中,预先使用启发式选择算法选择了原型。在本文中,我们采用一种更基本的方法,并将原型选择问题视为特征选择或降维问题,为此可以使用许多方法。通过几个实验,我们证明了基于从此类特征选择算法获得的原型进行图形嵌入的可行性,并证明了其胜过先前方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号