...
首页> 外文期刊>Pest Management Science >Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae)
【24h】

Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype Bemisia tabaci (Hemiptera: Aleyrodidae)

机译:B型烟粉虱(半翅目:无翅目)对噻虫嗪抗性的交叉耐药性研究和生化机制

获取原文
获取原文并翻译 | 示例

摘要

BACKGROUND: B-biotype Bemisia tabaci (Gennadius) has invaded China over the past two decades. To understand the risks and to determine possible mechanisms of resistance to thiamethoxam in B. tabaci, a resistant strain was selected in the laboratory. Cross-resistance and the biochemical mechanisms of thiamethoxam resistance were investigated in the present study.RESULTS: A 66.3-fold thiamethoxam-resistant B. tabaci strain (TH-R) was established after selection for 36 generations. Compared with the susceptible strain (TH-S), the selected TH-R strain showed obvious cross-resistance to imidacloprid (47.3-fold), acetamiprid (35.8-fold), nitenpyram (9.99-fold), abamectin (5.33-fold) and carbosulfan (4.43-fold). No cross-resistance to fipronil, chlorpyrifos or deltamethrin was seen. Piperonyl butoxide (PBO) and triphenyl phosphate (TPP) exhibited significant synergism on thiamethoxam effects in the TH-R strain (3.14- and 2.37-fold respectively). However, diethyl maleate (DEM) did not act synergistically with thiamethoxam. Biochemical assays showed that cytochrome P450 monooxygenase activities increased 1.21- and 1.68-fold respectively, and carboxylesterase activity increased 2.96-fold in the TH-R strain. However, no difference was observed for glutathione 5-transferase between the two strains.CONCLUSION: B-biotype B. tabaci develops resistance to thiamethoxam. Cytochrome P450 monooxygenase and carboxylesterase appear to be responsible for the resistance. Reasonable resistance management that avoids the use of cross-resistance insecticides may delay the development of resistance to thiamethoxam in this species.
机译:背景:过去二十年来,B型烟粉虱(Gemidius)已入侵中国。为了了解风险并确定烟曲霉对噻虫嗪耐药的可能机制,在实验室中选择了耐药菌株。结果:选择36代后,建立了66.3倍的耐噻虫嗪抗性烟曲霉菌株(TH-R)。与易感菌株(TH-S)相比,选择的TH-R菌株对吡虫啉(47.3倍),对乙酰胺类(35.8倍),尼替吡兰(9.99倍),阿维菌素(5.33倍)有明显的交叉抗性。和硫丹(4.43倍)。没有观察到对氟虫腈,毒死rif或溴氰菊酯的交叉耐药性。胡椒基丁醚(PBO)和磷酸三苯酯(TPP)在TH-R菌株中表现出对噻虫嗪效果的显着协同作用(分别为3.14和2.37倍)。但是,马来酸二乙酯(DEM)与噻虫嗪没有协同作用。生化分析表明,TH-R菌株中细胞色素P450单加氧酶的活性分别增加了1.21和1.68倍,而羧酸酯酶的活性增加了2.96倍。然而,在两个菌株之间没有观察到谷胱甘肽5-转移酶的差异。结论:B-生物型烟粉虱对噻虫嗪产生抗性。细胞色素P450单加氧酶和羧酸酯酶似乎是造成耐药性的原因。合理的抗性管理,避免使用交叉抗性杀虫剂,可能会延迟该物种对噻虫嗪的抗性发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号