首页> 外文期刊>Surveys in Geophysics: An International Review Journal of Geophysics and Planetary Sciences >An Improved Approach to Network Ambiguity Validation by Applying Outlier Detection to the Baseline Measurement Errors (Review)
【24h】

An Improved Approach to Network Ambiguity Validation by Applying Outlier Detection to the Baseline Measurement Errors (Review)

机译:通过将异常值检测应用于基线测量误差来改进网络歧义验证的方法(综述)

获取原文
获取原文并翻译 | 示例

摘要

As a prerequisite of network differential global positioning system applications, the network ambiguity must be determined. Ambiguity resolution and validation are important aspects of this process. However, validation theory is still under investigation. This paper presents an improved network ambiguity validation method that incorporates additional knowledge measured from the network. This process involves the detection of outliers of the baseline measurement errors. By breaking the spatial correlation, incorrectly fixed ambiguities cause the corresponding baseline measurement errors to appear as outliers, which may be discovered and identified with the proposed outlier detection algorithm and outlier identification algorithm, respectively. These detection and identification procedures are iteratively performed until all of the wrong baseline ambiguities are corrected. Because the validation procedure is unconnected to the initial integer ambiguity estimation process, any available ambiguity resolution method may be used to obtain the initial integers, without algorithm correction. When the network ambiguity combinations do not pass the validation algorithm, the method uses a direct estimation algorithm to obtain the correct ambiguity. By using a direct estimation algorithm rather than a search process, this new method consumes less computational time than conventional methods. This study compares the performance of this new method with those of the conventional F-ratio and W-ratio test validation algorithms by using Monte Carlo simulation techniques. Results from a field experiment conducted on data from the United States continuously operating reference stations (US-CORS) reveal that this validation algorithm accelerates the convergence process of ambiguity determination.
机译:作为网络差分全球定位系统应用的前提,必须确定网络的模糊性。歧义解决和验证是此过程的重要方面。但是,验证理论仍在研究中。本文提出了一种改进的网络歧义验证方法,该方法结合了从网络测得的其他知识。此过程涉及检测基线测量误差的异常值。通过破坏空间相关性,错误固定的歧义会导致相应的基线测量误差显示为离群值,可以分别通过提出的离群值检测算法和离群值识别算法来发现和识别这些异常。反复执行这些检测和识别过程,直到纠正所有错误的基线歧义。因为验证过程与初始整数模糊度估计过程无关,所以可以使用任何可用的歧义度解析方法来获得初始整数,而无需进行算法校正。当网络模糊度组合未通过验证算法时,该方法使用直接估计算法来获取正确的模糊度。通过使用直接估计算法而不是搜索过程,该新方法比传统方法消耗更少的计算时间。这项研究通过使用蒙特卡洛模拟技术,将该新方法的性能与常规F比率和W比率测试验证算法的性能进行了比较。对来自美国连续运行参考站(US-CORS)的数据进行的现场实验结果表明,该验证算法可加速模糊度确定的收敛过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号