首页> 外文期刊>Structural and multidisciplinary optimization >Pareto front spacing with differential geometry in multidisciplinary systems
【24h】

Pareto front spacing with differential geometry in multidisciplinary systems

机译:多学科系统中具有微分几何的帕累托前间距

获取原文
获取原文并翻译 | 示例

摘要

Multidisciplinary Design Optimization, also known as MDO, deals with the optimization of complex but typically single-objective design problems. As such, it would be valuable to combine it with Multi-Objective Optimization (MOO). Within MOO, Weighted Sums (WS) is a standard solution method, but it may not produce a good spacing of solution points along the Pareto Front (PF). Using our differential geometry MDO framework, we present a technique for intelligently spacing out Pareto solutions produced with WS in a multidisciplinary MOO formulation. Following an initial demonstration, we present modifications to our method to handle ill-conditioning better, to produce fewer dominated points in PF refinement, and to use MOO solution methods other than WS.
机译:多学科设计优化(也称为MDO)处理复杂但通常是单目标设计问题的优化。因此,将其与多目标优化(MOO)结合将很有价值。在MOO中,加权求和(WS)是一种标准的求解方法,但是它可能不会沿着Pareto Front(PF)产生良好的求解点间距。使用我们的微分几何MDO框架,我们提出了一种在多学科MOO公式中智能地分隔由WS生成的Pareto解决方案的技术。在初步演示之后,我们提出了对方法的修改,以更好地处理疾病,在PF细化中产生较少的支配点,并使用WS以外的MOO解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号