首页> 外文期刊>Statistics in medicine >Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization
【24h】

Testing concordance of instrumental variable effects in generalized linear models with application to Mendelian randomization

机译:在广义线性模型中测试工具变量效应的一致性并应用于孟德尔随机化

获取原文
获取原文并翻译 | 示例

摘要

Instrumental variable regression is one way to overcome unmeasured confounding and estimate causal effect in observational studies. Built on structural mean models, there has been considerable work recently developed for consistent estimation of causal relative risk and causal odds ratio. Such models can sometimes suffer from identification issues for weak instruments. This hampered the applicability of Mendelian randomization analysis in genetic epidemiology. When there are multiple genetic variants available as instrumental variables, and causal effect is defined in a generalized linear model in the presence of unmeasured confounders, we propose to test concordance between instrumental variable effects on the intermediate exposure and instrumental variable effects on the disease outcome, as a means to test the causal effect. We show that a class of generalized least squares estimators provide valid and consistent tests of causality. For causal effect of a continuous exposure on a dichotomous outcome in logistic models, the proposed estimators are shown to be asymptotically conservative. When the disease outcome is rare, such estimators are consistent because of the log-linear approximation of the logistic function. Optimality of such estimators relative to the well-known two-stage least squares estimator and the double-logistic structural mean model is further discussed.
机译:工具变量回归是克服观测研究中无法测量的混淆并估计因果关系的一种方法。建立在结构均值模型的基础上,最近进行了大量工作来一致估计因果相对风险和因果比值。此类模型有时可能会因为仪器较弱而遭受识别问题的困扰。这阻碍了孟德尔随机分析在遗传流行病学中的适用性。当存在多种遗传变量作为工具变量,并且在存在不可测混杂因素的情况下在广义线性模型中定义了因果关系时,我们建议测试工具变量对中间暴露的影响与工具变量对疾病结局的一致性,作为检验因果关系的一种手段。我们表明,一类广义最小二乘估计量提供了因果关系的有效且一致的检验。对于逻辑模型中连续暴露对二分结果的因果关系,建议的估计量被证明是渐近保守的。当疾病的结果很少见时,由于对数函数的对数线性近似,这样的估计量是一致的。相对于众所周知的两阶段最小二乘估计器和双逻辑结构均值模型,进一步讨论了此类估计器的最优性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号