首页> 外文期刊>Statistics in medicine >A Bayesian model averaging approach with non-informative priors for cost-effectiveness analyses.
【24h】

A Bayesian model averaging approach with non-informative priors for cost-effectiveness analyses.

机译:一种贝叶斯模型平均方法,使用非信息先验进行成本效益分析。

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of assessing new and existing technologies for their cost-effectiveness in the case where data on both costs and effects are available from a clinical trial, and we address it by means of the cost-effectiveness acceptability curve. The main difficulty in these analyses is that cost data usually exhibit highly skew and heavy-tailed distributions, so that it can be extremely difficult to produce realistic probabilistic models for the underlying population distribution. Here, in order to integrate the uncertainty about the model into the analysis of cost data and into cost-effectiveness analyses, we consider an approach based on Bayesian model averaging (BMA) in the particular case of weak prior informations about the unknown parameters of the different models involved in the procedure. The main consequence of this assumption is that the marginal densities required by BMA are undetermined. However, in accordance with the theory of partial Bayes factors and in particular of fractional Bayes factors, we suggest replacing each marginal density with a ratio of integrals that can be efficiently computed via path sampling.
机译:在可以从临床试验中获得成本和效果数据的情况下,我们考虑评估新技术和现有技术的成本效益的问题,并通过成本效益可接受性曲线来解决。这些分析的主要困难在于,成本数据通常呈现出高度偏斜和重尾分布,因此,很难为基础的人口分布生成现实的概率模型。在这里,为了将模型的不确定性整合到成本数据分析和成本效益分析中,我们考虑了一种基于贝叶斯模型平均(BMA)的方法,在这种情况下,关于未知参数未知参数的先验信息较弱。该过程涉及不同的模型。该假设的主要结果是BMA所需的边际密度尚未确定。但是,根据部分贝叶斯因子(尤其是分数贝叶斯因子)的理论,我们建议使用可以通过路径采样有效计算的积分比率替换每个边际密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号